Multiplicative Updates for Nonnegative Quadratic Programming
نویسندگان
چکیده
منابع مشابه
Multiplicative Updates for Nonnegative Quadratic Programming
Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and co...
متن کاملMultiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines
We derive multiplicative updates for solving the nonnegative quadratic programming problem in support vector machines (SVMs). The updates have a simple closed form, and we prove that they converge monotonically to the solution of the maximum margin hyperplane. The updates optimize the traditionally proposed objective function for SVMs. They do not involve any heuristics such as choosing a learn...
متن کاملAdaptive multiplicative updates for quadratic nonnegative matrix factorization
In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Quadratic Nonnegative Matrix Factorization (QNMF) is a new class of NMF methods where some factorizing matrices occur twice in the approximation. QNMF finds its applications in graph partition, bi-clustering, graph matching, etc. However, the original QNMF algorithms ...
متن کاملGlobal convergence of modified multiplicative updates for nonnegative matrix factorization
Nonnegative matrix factorization (NMF) is the problem of approximating a given nonnegative matrix by the product of two nonnegative matrices. The multiplicative updates proposed by Lee and Seung are widely used as efficient computational methods for NMF. However, the global convergence of these updates is not formally guaranteed because they are not defined for all pairs of nonnegative matrices...
متن کاملOrthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds
Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, the goal of which is decompose a data matrix into a product of two factor matrices with all entries in factor matrices restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering). In this paper we present an algorithm for orthogonal nonn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2007
ISSN: 0899-7667,1530-888X
DOI: 10.1162/neco.2007.19.8.2004